This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 8328, EID 8336
Network Working Group                                         M. Nystrom
Request for Comments: 2986                                    B. Kaliski
Obsoletes: 2314                                             RSA Security
Category: Informational                                    November 2000


          PKCS #10: Certification Request Syntax Specification
                              Version 1.7

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2000).  All Rights Reserved.

Abstract

   This memo represents a republication of PKCS #10 v1.7 from RSA
   Laboratories' Public-Key Cryptography Standards (PKCS) series, and
   change control is retained within the PKCS process.  The body of this
   document, except for the security considerations section, is taken
   directly from the PKCS #9 v2.0 or the PKCS #10 v1.7 document.

   This memo describes a syntax for certification requests.

Table of Contents

   1.  Introduction ................................................. 2
   2.  Definitions and notation ..................................... 2
   2.1  Definitions ................................................. 2
   2.2  Notation .................................................... 4
   3.  Overview ..................................................... 4
   4.  Certification request syntax ................................. 5
   4.1  CertificationRequestInfo .................................... 5
   4.2  CertificationRequest ........................................ 7
   5.  Security Considerations ...................................... 8
   6.  Authors' Addresses ........................................... 8
   A.  ASN.1 module ................................................. 9
   B.  Intellectual property considerations ........................ 10
   C.  Revision history ............................................ 10
   D.  References .................................................. 11
   E.  Contact information & About PKCS ............................ 12
   Full Copyright Statement ........................................ 14

1. Introduction

   This document describes syntax for certification requests.  A
   certification request consists of a distinguished name, a public key,
   and optionally a set of attributes, collectively signed by the entity
   requesting certification.  Certification requests are sent to a
   certification authority, which transforms the request into an X.509
   [9] public-key certificate.  (In what form the certification
   authority returns the newly signed certificate is outside the scope
   of this document.  A PKCS #7 [2] message is one possibility.)

   The intention of including a set of attributes is twofold: to provide
   other information about a given entity , or a "challenge password" by
   which the entity may later request certificate revocation; and to
   provide attributes for inclusion in X.509 certificates.  A non-
   exhaustive list of attributes is given in PKCS #9 [3].

   Certification authorities may also require non-electronic forms of
   request and may return non-electronic replies.  It is expected that
   descriptions of such forms, which are outside the scope of this
   document, will be available from certification authorities.

   The preliminary intended application of this document is to support
   PKCS #7 cryptographic messages, but it is expected that other
   applications will be developed (see e.g. [4]).

2. Definitions and notation

 2.1 Definitions

   For the purposes of this document, the following definitions apply.

   ALGORITHM       An information object class defined in X.509 to
                   describe objects composed of an algorithm (a unique
                   object identifier) and its parameters (any ASN.1
                   type).  The values of objects in this class can be
                   represented by the ASN.1 type AlgorithmIdentifier{}.
                   ALGORITHM is defined as the "useful" information
                   object class TYPE-IDENTIFIER, specified in [11],
                   Annex A.

   AlgorithmIdentifier{}
                   A useful parameterized version of X.509 type
                   AlgorithmIdentifier is defined in this document.
                   This type tightly binds pairs of algorithm object
                   identifiers to their associated parameter types.
                   When referenced, the single parameter of
                   AlgorithmIdentifier{} specifies a constraint on the

                   pairs of values that may appear in that instance of
                   the type.  The encoded values of
                   AlgorithmIdentifier{} are equivalent to those of type
                   AlgorithmIdentifier.

   ASN.1           Abstract Syntax Notation One, as defined in the ASN.1
                   standards ([10], [11], [12], and [13]).

   ATTRIBUTE       This class describes objects composed of an attribute
                   (a unique object identifier) and an associated set of
                   attribute values (any ASN.1 type).  The values of
                   objects in this class can be represented by type
                   Attribute{}.

   Attribute{}     A useful parameterized version of X.501 [8] type
                   Attribute is defined in this document.  This type
                   tightly binds pairs of attribute type object
                   identifiers to one or more attribute values types.
                   In the ASN.1 open type notation, an attribute type is
                   defined as ATTRIBUTE.&id and an attribute value as
                   ATTRIBUTE.&Type.  When referenced, the single
                   parameter of Attribute{} specifies a constraint on
                   the pairs of values that may appear in an instance of
                   the type.  The encoded values of Attribute{} are
                   equivalent to those of type Attribute.

   BER             Basic Encoding Rules for ASN.1, as defined in X.690
                   ([14]).

   Certificate     A type that binds a subject entity's distinguished
                   name to a public key with a digital signature.  This
                   type is defined in X.509.  This type also contains
                   the distinguished name of the certificate issuer (the
                   signer), an issuer-specific serial number, the
                   issuer's signature algorithm identifier, a validity
                   period, and an optional set of certificate
                   extensions.

   DER             Distinguished Encoding Rules for ASN.1, as defined in
                   X.690.  DER is a subset of BER.

   Name            A type that uniquely identifies or "distinguishes"
                   objects in an X.500 [7] directory.  This type is
                   defined in X.501.  In an X.509 certificate, the type
                   identifies the certificate issuer and the certificate
                   subject, the entity whose public key is certified.

  2.2 Notation

   No special notation is used in this document.

3. Overview

   A certification request consists of three parts: "certification
   request information," a signature algorithm identifier, and a digital
   signature on the certification request information.  The
   certification request information consists of the entity's
   distinguished name, the entity's public key, and a set of attributes
   providing other information about the entity.

   The process by which a certification request is constructed involves
   the following steps:

        1. A CertificationRequestInfo value containing a subject
           distinguished name, a subject public key, and optionally a
           set of attributes is constructed by an entity requesting
           certification.

        2. The CertificationRequestInfo value is signed with the subject
           entity's private key.  (See Section 4.2.)

        3. The CertificationRequestInfo value, a signature algorithm
           identifier, and the entity's signature are collected together
           into a CertificationRequest value, defined below.

   A certification authority fulfills the request by authenticating the
   requesting entity and verifying the entity's signature, and, if the
   request is valid, constructing an X.509 certificate from the
   distinguished name and public key, the issuer name, and the
   certification authority's choice of serial number, validity period,
   and signature algorithm.  If the certification request contains any
   PKCS #9 attributes, the certification authority may also use the
   values in these attributes as well as other information known to the
   certification authority to construct X.509 certificate extensions.

   In what form the certification authority returns the new certificate
   is outside the scope of this document.  One possibility is a PKCS #7
   cryptographic message with content type signedData, following the
   degenerate case where there are no signers.  The return message may
   include a certification path from the new certificate to the
   certification authority.  It may also include other certificates such
   as cross-certificates that the certification authority considers
   helpful, and it may include certificate-revocation lists (CRLs).
   Another possibility is that the certification authority inserts the
   new certificate into a central database.

   Note 1 - An entity would typically send a certification request after
   generating a public-key/private-key pair, but may also do so after a
   change in the entity's distinguished name.

   Note 2 - The signature on the certification request prevents an
   entity from requesting a certificate with another party's public key.
   Such an attack would give the entity the minor ability to pretend to
   be the originator of any message signed by the other party.  This
   attack is significant only if the entity does not know the message
   being signed and the signed part of the message does not identify the
   signer.  The entity would still not be able to decrypt messages
   intended for the other party, of course.

   Note 3 - How the entity sends the certification request to a
   certification authority is outside the scope of this document.  Both
   paper and electronic forms are possible.

   Note 4 - This document is not compatible with the certification
   request syntax for Privacy-Enhanced Mail, as described in RFC 1424
   [5].  The syntax here differs in three respects: It allows a set of
   attributes; it does not include issuer name, serial number, or
   validity period; and it does not require an "innocuous" message to be
   signed.  This document is designed to minimize request size, an
   important feature for certification authorities accepting requests on
   paper.

4. Certification request syntax

   This section is divided into two parts.  The first part describes the
   certification-request-information type CertificationRequestInfo, and
   the second part describes the top-level type CertificationRequest.

 4.1 CertificationRequestInfo

   Certification request information shall have ASN.1 type
   CertificationRequestInfo:

   CertificationRequestInfo ::= SEQUENCE {
        version       INTEGER { v1(0) } (v1,...),
        subject       Name,
        subjectPKInfo SubjectPublicKeyInfo{{ PKInfoAlgorithms }},
        attributes    [0] Attributes{{ CRIAttributes }}
   }

   SubjectPublicKeyInfo { ALGORITHM : IOSet} ::= SEQUENCE {
        algorithm        AlgorithmIdentifier {{IOSet}},
        subjectPublicKey BIT STRING
   }

   PKInfoAlgorithms ALGORITHM ::= {
        ...  -- add any locally defined algorithms here -- }

   Attributes { ATTRIBUTE:IOSet } ::= SET OF Attribute{{ IOSet }}

   CRIAttributes  ATTRIBUTE  ::= {
        ... -- add any locally defined attributes here -- }

   Attribute { ATTRIBUTE:IOSet } ::= SEQUENCE {
        type   ATTRIBUTE.&id({IOSet}),
        values SET SIZE(1..MAX) OF ATTRIBUTE.&Type({IOSet}{@type})
   }

   The components of type CertificationRequestInfo have the following
   meanings:

        version is the version number, for compatibility with future
          revisions of this document.  It shall be 0 for this version of
          the standard.

        subject is the distinguished name of the certificate subject
          (the entity whose public key is to be certified).

        subjectPKInfo contains information about the public key being certified.  The information identifies the entity's 
EID 8328 (Verified) is as follows:

Section: 4.1

Original Text:

subjectPublicKeyInfo contains information about the public key being certified.

Corrected Text:

subjectPKInfo contains information about the public key being certified.
Notes:
This section describes top-level components of CertificationRequestInfo. "subjectPublicKeyInfo" should be labeled as "subjectPKInfo".
public-key algorithm (and any associated parameters); examples of public-key algorithms include the rsaEncryption object identifier from PKCS #1 [1]. The information also includes a bit-string representation of the entity's public key. For the public-key algorithm just mentioned, the bit string contains the DER encoding of a value of PKCS #1 type RSAPublicKey. The values of type SubjectPublicKeyInfo{} allowed for subjectPKInfo are constrained to the values specified by the information object set PKInfoAlgorithms, which includes the extension marker (...). Definitions of specific algorithm objects are left to specifications that reference this document. Such specifications will be interoperable with their future versions if any additional algorithm objects are added after the extension marker. attributes is a collection of attributes providing additional information about the subject of the certificate. Some attribute types that might be useful here are defined in PKCS #9. An example is the challenge-password attribute, which specifies a password by which the entity may request certificate revocation. Another example is information to appear in X.509 certificate extensions (e.g. the extensionRequest attribute from PKCS #9). The values of type Attributes{} allowed for attributes are constrained to the values specified by the information object set CRIAttributes. Definitions of specific attribute objects are left to specifications that reference this document. Such specifications will be interoperable with their future versions if any additional attribute objects are added after the extension marker. 4.2 CertificationRequest A certification request shall have ASN.1 type CertificationRequest: CertificationRequest ::= SEQUENCE { certificationRequestInfo CertificationRequestInfo, signatureAlgorithm AlgorithmIdentifier{{ SignatureAlgorithms }}, signature BIT STRING } AlgorithmIdentifier {ALGORITHM:IOSet } ::= SEQUENCE { algorithm ALGORITHM.&id({IOSet}), parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL } SignatureAlgorithms ALGORITHM ::= { ... -- add any locally defined algorithms here -- } The components of type CertificationRequest have the following meanings: certificationRequestInfo is the "certification request information." It is the value being signed.
EID 8336 (Verified) is as follows:

Section: 4.2

Original Text:

certificateRequestInfo is the "certification request information."

Corrected Text:

certificationRequestInfo is the "certification request information."
Notes:
There is no other reference to "certificateRequestInfo" and the ASN.1 definition specifies "certificationRequestInfo".
signatureAlgorithm identifies the signature algorithm (and any associated parameters) under which the certification-request information is signed. For example, a specification might include an ALGORITHM object for PKCS #1's md5WithRSAEncryption in the information object set SignatureAlgorithms: SignatureAlgorithms ALGORITHM ::= { ..., { NULL IDENTIFIED BY md5WithRSAEncryption } } signature is the result of signing the certification request information with the certification request subject's private key. The signature process consists of two steps: 1. The value of the certificationRequestInfo component is DER encoded, yielding an octet string. 2. The result of step 1 is signed with the certification request subject's private key under the specified signature algorithm, yielding a bit string, the signature. Note - An equivalent syntax for CertificationRequest could be written: CertificationRequest ::= SIGNED { EncodedCertificationRequestInfo } (CONSTRAINED BY { -- Verify or sign encoded -- CertificationRequestInfo -- }) EncodedCertificationRequestInfo ::= TYPE-IDENTIFIER.&Type(CertificationRequestInfo) SIGNED { ToBeSigned } ::= SEQUENCE { toBeSigned ToBeSigned, algorithm AlgorithmIdentifier { {SignatureAlgorithms} }, signature BIT STRING } 5. Security Considerations Security issues are discussed throughout this memo. 6. Authors' Addresses Magnus Nystrom RSA Security Box 10704 S-121 29 Stockholm Sweden EMail: magnus@rsasecurity.com Burt Kaliski RSA Security 20 Crosby Drive Bedford, MA 01730 USA EMail: bkaliski@rsasecurity.com APPENDICES A. ASN.1 Module This appendix includes all of the ASN.1 type and value definitions contained in this document in the form of the ASN.1 module PKCS-10. PKCS-10 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-10(10) modules(1) pkcs-10(1)} DEFINITIONS IMPLICIT TAGS ::= BEGIN -- EXPORTS All -- -- All types and values defined in this module are exported for use -- in other ASN.1 modules. IMPORTS informationFramework, authenticationFramework FROM UsefulDefinitions {joint-iso-itu-t(2) ds(5) module(1) usefulDefinitions(0) 3} ATTRIBUTE, Name FROM InformationFramework informationFramework ALGORITHM FROM AuthenticationFramework authenticationFramework; -- Certificate requests CertificationRequestInfo ::= SEQUENCE { version INTEGER { v1(0) } (v1,...), subject Name, subjectPKInfo SubjectPublicKeyInfo{{ PKInfoAlgorithms }}, attributes [0] Attributes{{ CRIAttributes }} } SubjectPublicKeyInfo {ALGORITHM: IOSet} ::= SEQUENCE { algorithm AlgorithmIdentifier {{IOSet}}, subjectPublicKey BIT STRING } PKInfoAlgorithms ALGORITHM ::= { ... -- add any locally defined algorithms here -- } Attributes { ATTRIBUTE:IOSet } ::= SET OF Attribute{{ IOSet }} CRIAttributes ATTRIBUTE ::= { ... -- add any locally defined attributes here -- } Attribute { ATTRIBUTE:IOSet } ::= SEQUENCE { type ATTRIBUTE.&id({IOSet}), values SET SIZE(1..MAX) OF ATTRIBUTE.&Type({IOSet}{@type}) } CertificationRequest ::= SEQUENCE { certificationRequestInfo CertificationRequestInfo, signatureAlgorithm AlgorithmIdentifier{{ SignatureAlgorithms }}, signature BIT STRING } AlgorithmIdentifier {ALGORITHM:IOSet } ::= SEQUENCE { algorithm ALGORITHM.&id({IOSet}), parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL } SignatureAlgorithms ALGORITHM ::= { ... -- add any locally defined algorithms here -- } END B. Intellectual property considerations RSA Security makes no patent claims on the general constructions described in this document, although specific underlying techniques may be covered. License to copy this document is granted provided that it is identified as "RSA Security Inc. Public-Key Cryptography Standards (PKCS)" in all material mentioning or referencing this document. RSA Security makes no representations regarding intellectual property claims by other parties. Such determination is the responsibility of the user. C. Revision history Version 1.0 Version 1.0 was the previous version of this document (also published as "version 1.5" in [6]). Version 1.7 This version incorporates several editorial changes, including updates to the references, and changes to ASN.1 type definitions. The following substantive changes have been made: - This version refers to X.680-X.690, the current international standards for ASN.1 and its encoding rules. All references to X.208 and X.209 have been eliminated. - The X.690 standard requires that the encoded values of SET OF components be sorted in ascending order under DER. Regardless of this, applications should not rely on the ordering of attribute components. - All references to PKCS #6 Extended-Certificate Syntax Standard have been removed. With the addition of extensions to X.509 version 3 certificates, RSA Laboratories is withdrawing support for PKCS #6. Note - The reason for using version 1.7 for this document is to avoid confusion with [6], which is named version 1.5, and an unsupported PKCS #10 version named Version 1.6. D. References [1] RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 2.0, October 1998. [2] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993. [3] RSA Laboratories. PKCS #9: Selected Attribute Types. Version 2.0, February 2000. [4] Adams, C. and S. Farrell, "Internet X.509 Public Key Infrastructure - Certificate Management Protocols", RFC 2510, March 1999. [5] Kaliski, B., "Privacy Enhancement for Internet Electronic Mail: Part IV: Key Certification and Related Services", RFC 1424, February 1993. [6] Kaliski, B., "PKCS #10: Certification Request Syntax Version 1.5", RFC 2314, March 1998. [7] ITU-T Recommendation X.500 (1997) | ISO/IEC 9594-1:1998, Information technology - Open Systems Interconnection - The Directory: Overview of concepts, models and services. [8] ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1995, Information technology - Open Systems Interconnection - The Directory: Models. [9] ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1998, Information technology - Open Systems Interconnection -The Directory: Authentication framework. [10] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information Technology - Abstract Syntax Notation One (ASN.1): Specification of Basic Notation. [11] ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information Technology - Abstract Syntax Notation One (ASN.1): Information Object Specification. [12] ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information Technology - Abstract Syntax Notation One (ASN.1): Constraint Specification. [13] ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information Technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 Specifications. [14] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information Technology - ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER). E. Contact Information & About PKCS The Public-Key Cryptography Standards are specifications produced by RSA Laboratories in cooperation with secure systems developers worldwide for the purpose of accelerating the deployment of public- key cryptography. First published in 1991 as a result of meetings with a small group of early adopters of public-key technology, the PKCS documents have become widely referenced and implemented. Contributions from the PKCS series have become part of many formal and de facto standards, including ANSI X9 documents, PKIX, SET, S/MIME, and SSL. Further development of PKCS occurs through mailing list discussions and occasional workshops, and suggestions for improvement are welcome. For more information, contact: PKCS Editor RSA Laboratories 20 Crosby Drive Bedford, MA 01730 USA pkcs-editor@rsasecurity.com http://www.rsasecurity.com/rsalabs/pkcs Full Copyright Statement Copyright (C) The Internet Society 2000. All Rights Reserved. This document and translations of it may be copied and furnished to others provided that the above copyright notice and this paragraph are included on all such copies. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.